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“I am the master of my fate, I am the captain of my soul”

from Invictus, by William Ernest Henley
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Abstract

Neural networks have become increasingly complex, driving the need for effi-

cient execution. This need is particularly pronounced in environments where

computational resources are limited and the size of the models poses a chal-

lenge to traditional execution methods. One way to address this is through

model parallelism where we partition a model over multiple devices. This

thesis presents a method for enhancing model parallelism in existing neural

neural network architectures, specifically focusing on the Inception-ResNet-v2

model. Our method consist of 3 transformations: placing sequential cells in

parallel (ParallelResNet), replacing regular convolutions with grouped convo-

lutions (GroupedResNet), and splitting operators along the channel dimension

(SplitResNet). We analyze our proposed transformations on the Inception-

ResNet-v2 model and show that they introduce a straightforward way to parti-

tion the model that minimizes communication overhead and creates partitions

of equal computation complexity. We conclude that the classification accuracy

is reduced for ParallelResNet, and increases for GroupedResNet. SplitResNet

is either unaffected or reduced depending on the dataset. However, overall the

effect of the transformations on classification accuracy is very small and further

evaluation on more complex classification problems is necessary to quantify it.
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1

Introduction

In recent years the field of machine learning has continued to make significant strides.

From recognizing birds by sound1 running locally on a phone, to recognition of over 90000

flora and fauna taxa around the world using a complex model running in the datacenter2,

mainstream adoption continues to grow. Neural networks are a powerful driving force

behind the advancements in machine learning, capable of learning complex patterns given

a sufficiently large dataset. Despite their effectiveness on complex problems, or possibly

because of it, the inner workings of neural networks are not fully understood. Yet there

is a large amount of existing neural network architectures that are known to provide good

results in their respective domains.

Convolutional Neural Networks (CNNs) have become a cornerstone in computer vision

tasks, such as image classification, object detection, and semantic segmentation. While

CNNs compared to more recent transformer architectures are relatively small; designing,

training, and deploying one from a computer science perspective still has substantial re-

quirements in both compute and memory capacity. Fortunately, neural networks contain a

lot of parallelism, as their operations are mostly SIMD (Single Instruction, Multiple Data)

in nature, and their control flow is mostly static. This maps very well to existing accelera-

tors, predominantly GPUs, which have been used ever since the original AlexNet to speed

up training and inference workloads (14).

To further accelerate training and inference multiple GPUs can be used. A straightfor-

ward way to do this is by storing a replica of the model on each GPU and partitioning

the input data over these replicas. While this will slightly decrease the efficiency of the

training process, because the weights have to be averaged at the end of every batch, the

1https://www.macaulaylibrary.org/2021/06/22/behind-the-scenes-of-sound-id-in-merlin/
2https://www.inaturalist.org/
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1. INTRODUCTION

increased computation means that we can simply train for more epochs to overcome this.

In the end, this approach can still greatly increase throughput during both training and

inference (15).

This however only takes advantage of the compute scaling from going parallel, not the

memory scaling.While this isn’t an issue for CNNs on GPUs, larger models or CNNs on

more resource starved hardware do need to take advantage of this memory scaling. For this

we need model parallelism, and we will explore this concept in more detail in Chapter 2

by reiterating the main findings of our previous literature study into the subject (3). For

presenting the core of this thesis however we shall for now simply state that the efficacy of

a particular model parallelism implementation depends on the technical implementation

(both hardware and software), as well as the architecture of the model. The core hypothesis

of this thesis is then that we can define generic transformations on existing CNN model

architectures to make them more suitable for model parallelism, thereby opening up new

deployment options that are otherwise unfeasible due to hardware limitations.

1.1 Approach

In order to test this hypothesis we address the following research questions:

1. What transformations make an existing architecture more suitable for model paral-

lelism?

2. What is the influence of these transformations on accuracy?

3. What is the generality of these transformations with regards to varying datasets?

While model parallelism is used in both training and inference we limit the analysis

of the transformations to the forward pass. This covers that use-case of inference, but

only partially covers training. In order to answer the research questions we will propose 3

transformations on the Inception-ResNet-v2 model (19): ParallelResNet, GroupedResNet,

and SplitResNet. Because an optimal model parallelism implementation is dependent not

only on the model architecture, but also the hardware setup it is deployed on, we design

our transformations to have a configurable degree of parallelism. We provide an analysis

of the benefits of the transformation and test the accuracy on two datasets. This allows a

more informed decision to be made on the tradeoffs between model accuracy and overall

performance.
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1.2 Outline

1.2 Outline

In Chapter 2 we explore the background and terminology of neural networks and CNNs.

Section 2.2 reiterates the main findings of our previous literature study into model paral-

lelism. In Section 2.4 we then apply both to provide an analysis and overview of Inception-

ResNet-v2.

In Chapter 3 we outline our proposed solution consisting of 3 transformations. In Sec-

tion 3.1 we put forth a number of requirements that the transformations should meet and

introduce the conceptual framework with which we express the transformations in Sec-

tion 3.2. Our proposed transformations are described and analyzed in Section 3.3, and

Section 3.4 covers our implementations.

Chapter 4 discusses the training setup and the results of the transformed models on

separate subsets of 100 classes of the ImageNet dataset. The conclusion to our work is

presented in Chapter 5.
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2

Background

In machine learning, we distinguish between two phases: training and inference. During

training, we train a model on a dataset. In the inference phase, the trained model is tasked

with making predictions on new, unseen data. One such model is a neural network, which

dominates the state-of-the-art for complex prediction tasks. To understand the challenges

our work addresses, it is necessary to understand a number of concepts about neural

networks, as well as their execution model. Earlier we have conducted a study into model

parallelism in neural networks (3) and the content of this thesis builds on the terminology

introduced there, as well as our previous findings on the challenges of model parallelism.

2.1 Neural networks

Neural networks are a class of machine learning models inspired by the structure of the

human brain. These networks are composed of layers of interconnected artificial neurons,

which are mathematical functions designed to simulate the behavior of biological neu-

rons. Neural networks have become the cornerstone of many state-of-the-art applications,

including image recognition, natural language processing, and even playing games.

At a high level, a neural network consists of an input layer, one or more hidden layers,

and an output layer. The input layer receives raw data, which is then processed through

the hidden layers. These connections between layers are weighted, and it is through the

adjustment of these weights that the network learns to map inputs to outputs.

2.1.1 Training phase

During the training phase, the neural network is exposed to a large dataset, often compris-

ing millions of data points, such as labeled images or text samples. The network adjusts

5



2. BACKGROUND

its weights based on this data to minimize the difference between its predicted output and

the actual labels, a process known as backpropagation. This iterative process is compu-

tationally intensive, requiring many epochs (full passes through the training dataset) and

vast amounts of computational resources.

The amount of data involved in training modern neural networks can be enormous.

For example, training a network on the comparatively small ImageNet dataset already

involves processing over 14 million images across 1,000 categories. Additionally the models

themselves can contain millions, or even billions, of parameters that need to be optimized.

2.1.2 Inference phase

During inference, the network applies the learned weights to the input data to produce an

output, such as classifying an image or translating a sentence. Unlike the training phase,

inference is typically less computationally demanding, as it involves a single forward pass

through the network without any weight updates. However, the scale of inference tasks can

still be significant, particularly when deployed in real-time applications like self-driving cars

or large-scale recommender systems, where the network may need to process thousands or

millions of inferences per second.

Overall, neural networks are powerful tools that can learn from vast amounts of data,

making them highly effective for a wide range of tasks. The following section will delve

deeper into the technical structure of these networks.

2.2 Execution model and parallelism

Neural networks, are composed of artificial neurons organized in layers. Each neuron

within a layer performs the same operation on its input data, often referred to as an

’operator’. A straightforward example of this is the fully connected layer, where every

neuron is connected to all neurons in the previous layer. Operators are generally expressed

as functions on n-dimensional arrays called tensors. Each operator, such as a convolution,

takes one or more tensors as its input, performs a specific computation, and produces one

or more output tensors. The input and output tensors are also referred to as activation

tensors. This abstraction allows the neural network to be represented as a directed graph,

where nodes represent the operators and their parameters, while the edges represent the

data produced by these operations.

6



2.3 Convolutional neural networks

The execution model of neural networks, which is represented by this graph, is partic-

ularly useful for analyzing parallelism in neural networks. There are two main types of

parallelism: inter-operator and intra-operator parallelism.

2.2.1 Inter-operator parallelism

Inter-operator parallelism assigns different operators, such as convolutional layers or fully

connected layers, to different compute devices. This approach can be beneficial when a

model is large and complex, allowing different parts of the network to be processed simulta-

neously on different devices. However, this approach requires a pipelining implementation

to benefit from multiple devices. Additionally during training this approach suffers from

reduced device utilizations, as there is a data dependency between the backward pass and

the forward pass. An advantage of this approach is that only the tensors crossing the

partition boundaries in the operator graph need to be communicated, which reduces the

bandwidth requirements of this type of parallelism.

2.2.2 Intra-operator parallelism

Intra-operator parallelism, on the other hand, involves exploiting the inherent parallelism

within individual operators. Since operators generally work in a SIMD (Single Instruc-

tion, Multiple Data) manner on tensors, this type of parallelism focuses on partitioning

the workload within a single operator across multiple compute units. The exact partition-

ing strategy can vary greatly depending on the operator but generally involves scattering

and gathering tensors for each data sample. This type of parallelism is typically limited

to a single compute node due to the high communication overhead involved in distribut-

ing the workload across multiple devices. By considering both inter-operator and intra-

operator parallelism, we can optimize the execution of neural networks in distributed or

high-performance computing environments.

2.3 Convolutional neural networks

In this thesis, we focus on Convolutional Neural Networks (CNNs). CNNs are particularly

well-suited for tasks that involve spatial data, such as images, making them widely used in

computer vision. While recently dethroned by vision transformers1, CNN-based architec-

tures have dominated the imagenet benchmark ever since AlexNet was introduced in 2012

(14).
1https://paperswithcode.com/sota/image-classification-on-imagenet
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2. BACKGROUND

Architecturally, the distinguishing factor of CNNs is their use of the convolution operator.

This operator computes a weighted sum over a local region of the input, weights that the

operator can learn from the training dataset. Unlike fully connected layers where each

neuron is connected to every neuron in the previous layer, convolutional layers use a sliding

window approach, where the same set of weights (called a filter or kernel) is applied to

different parts of the input. This drastically reduces the number of weights in the network

and allows it to learn to extract features from its input. By stacking multiple convolution

operators in a row the network can learn more complex features.

Residual connections are a later addition to the CNN (9), addressing the vanishing gra-

dients problem. This issue arises when the gradients used to update the network’s weights

diminish as they are propagated back through the network, leading to very small updates

for the initial layers. Residual connections mitigate this by introducing skip connections,

which carry outputs from earlier layers directly to later layers.

All the activation tensors of a CNN are 3-dimensional: two spatial dimensions (width

and height) and one dimension for the different channels in the image. There is a fourth

dimension called the batch dimension that determines how many data samples get passed

through the network at a time. This is done to keep hardware utilization up and while

this number does have an effect on the efficiency of the training process, we omit it here

and in the analysis in this work.

As an example of a typical shape of activation tensors in a CNN: Inception-ResNet-v2’s

input tensor is 299 × 299 × 3, one 299 × 299 image for every color channel, and the first

convolution operator produces an output tensor of 149× 149× 32.

2.4 Inception-ResNet-v2

The Inception-ResNet-v2 model is a hybrid architecture that combines the strengths of two

influential neural network designs: the Inception architecture and the ResNet architecture.

It incorporates residual connections into the Inception building blocks to facilitate faster

training and improved accuracy. While the original model follows a specific configura-

tion of these blocks, in our work, we employ these building blocks in a slightly different

configuration to suit our specific objectives. As illustrated in Figure 2.1, the model is a

feed-forward network with residual connections consisting of 3 main stages and a number

of special blocks.

8



2.4 Inception-ResNet-v2

8x

4x

35x35x320
Stem

Inception-
ResNet-A

17x17x1088
Reduction-A

8x8x2080
Reduction-B

8x8x2080

1x1x1536
Average Pooling

1x1x1536
Dropout

Fully Connected

299x299x3
Input Image

Output Classes
1x1x100

+

ReLU

35x35x320

Inception-
ResNet-B+

ReLU

17x17x1088

4x

Inception-
ResNet-C+

ReLU

Figure 2.1: A high-level overview
of different blocks in the Inception-
ResNet-v2 model.

Stem: This initial part of the network processes

the input image and performs basic convolution oper-

ations to reshape the input tensor for the first stage.

Inception-ResNet-A: The first stage made up of a

series of Inception-ResNet-A blocks. Each block con-

sists of three paths that are concatenated together.

The input and the output of these blocks have the

same shape.

Reduction-A: This block reduces the spatial di-

mensions and increases the channel dimension of the

input data, reshaping the tensor for the next main

stage.

Inception-ResNet-B : The second stage, similar to

the “Inception-ResNet-A” block, but with 2 convolu-

tional paths. Again the input and output are of the

same shape.

Reduction-B : Another block that reduces the spa-

tial dimensions and increases the channel dimension

of the input data, this time to reshape the tensor for

the Inception-ResNet-C blocks.

Inception-ResNet-C : The final stage of Inception-

ResNet blocks in the architecture. This one features

convolutions with largest kernels. Once again the

input and the output of these blocks have the same

shape.

Average Pooling : A global average pooling layer

that reduces each feature map to a single value, sum-

marizing the presence of features across the spatial

dimensions.

Dropout : A regularization technique used to pre-

vent overfitting by randomly setting a fraction of in-

put units to zero during training.

Fully Connected : The final operator used for clas-

sification, going from 1536 to however many classes
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2. BACKGROUND

the model needs to distinguish between. In our case

this is 100 classes.

2.4.1 Inception-ResNet-A

Inception-ResNet-A

32

Conv 3x3

48

Conv 3x3

Conv 1x1

32

Conv 3x3

32

Conv 1x1

Conv 1x1

35x35x320

Conv 1x1

+

35x35x320

ReLU

32

64

35x35x320
In

Out

(a) Inception-ResNet-A.

17x17x1088

Inception-ResNet-B

128

Conv 7x1

160

Conv 1x7

Conv 1x1

Conv 1x1

17x17x1088

Conv 1x1

+

ReLU

192

192

17x17x1088
In

Out

(b) Inception-ResNet-B.

Inception-ResNet-C

192

Conv 3x1

224

Conv 1x3

Conv 1x1

Conv 1x1

8x8x2080

Conv 1x1

+

8x8x2080

ReLU

192

256

In

Out

8x8x2080

(c) Inception-ResNet-C.

Figure 2.2: The structures of the Inception-ResNet blocks: (a) Inception-ResNet-A, (b)
Inception-ResNet-B, and (c) Inception-ResNet-C. The links between the operators represent
the input-output tensors that get produced and consumed by the operators. The numbers on
the links represent the size of the channel dimension at that point. The spatial dimensions
and the batch dimension are not listed as they are dependent on the input data and the
configuration respectively.

The Inception-ResNet-A block is a key component of the Inception-ResNet-v2 architec-

ture. The structure of this block is depicted in Figure 2.2a. It consists of three parallel

branches, each performing a series of convolutions, whose outputs are concatenated and

then merged with the input of the block. The ouputs of the branches have the same spatial

dimensions and are all concatenated along the channel dimension and passed through a

“filter-expansion layer” (1 × 1 convolution without activation), which expands the channel

dimension from 128 to 320. This expanded output is added to the original input via the

residual connection, and followed by a ReLU activation function to introduce non-linearity.
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2.5 Related work

2.4.2 Inception-ResNet-B

The Inception-ResNet-B block is another essential component of the Inception-ResNet-v2

architecture. These blocks make up the biggest part of the model. The structure of this

block is depicted in Figure 2.2b and features two parallel branches instead of three, as well

as significantly more channels (1088 against 320). Again the outputs of both branches are

concatenated along the channel dimension and passed through a filter-expansion layer. As

noted before the connection to the residual layer is identical to the Inception-ResNet-A

block.

2.4.3 Inception-ResNet-C

The Inception-ResNet-C block is the last major component of the Inception-ResNet-v2

architecture, and is depicted in Figure 2.2c.The Inception-ResNet-C block, similar to the

Inception-ResNet-B block, features two parallel branches. However, the convolution oper-

ations in these branches have differently sized kernels. This block has again significantly

more branches, 2080, compared to the previous 1088.

2.5 Related work

The approach of altering existing neural network models to fit new requirements is well-

established in the field, with various techniques focusing on different aspects of optimiza-

tion. One such technique is pruning (2), which aims to reduce memory usage by selectively

removing neurons from the network. This technique is particularly useful for deploying

models on memory-constrained hardware. Among the different pruning strategies, struc-

tured pruning (8, 10), where entire channels or filters in convolutional neural networks

(CNNs) are pruned based on their importance, in particular is relevant. Our work draws

inspiration from this approach, as two of our proposed transformations also target the

channel dimension of CNNs. Unlike pruning our method requires retraining the network.

Related to our work are a number of notions from transfer learning. Chen et al. (5)

defines two transformations, ‘Net2WiderNet, and ‘Net2DeeperNet’, which allow for adding

additional operators to a pre-trained neural network. The transformed model can then be

trained further for increased accuracy. While we don’t share the goal of improving accuracy,

the idea of transforming neural networks stems from this work. Additionally, an approach

that allows us to reuse the parameters from already trained models would be beneficial to

us as it requires evaluation a large amount of slight model variations. This work however is

11



2. BACKGROUND

not directly applicable to ours because it relies on the transformations being local to a single

layer. Our transformations are applied on multiple layers throughout the model. Another

relevant transfer learning technique is model distillation (11), which reduces memory usage

by training a smaller, more efficient "student" network using the output generated by a

larger "teacher" network. The student network is designed to mimic the performance of

the teacher network while being significantly smaller and less computationally intensive.

Although model distillation and pruning share our goal of optimizing models for specific

hardware constraints, our work differs in its focus on enhancing model parallelism. Thus

while pruning and model distillation focus on removing elements with minimal impact

on accuracy, our approach also targets elements that hinder model parallelism, such as

inter-partition connections.

A more automated approach to model optimization is found in the field of hardware-

aware neural architecture search (NAS) (18). This area of research employs techniques such

as reinforcement learning (7) and evolutionary computing (24) to automatically search for

neural network architectures that are optimized according to a hardware cost model. While

these methods excel at tailoring neural networks for single resource-constrained devices,

such as a smartphone’s System-on-a-Chip (SoC) or a single FPGA, they do not typically

address the challenges of parallelism.

Additionally there is a large amount of research in the systems we use to parallelize

models without altering their structure. GPipe (12) and PipeDream (17) both describe

methods to apply pipeline parallelism to models. Although suboptimal during training this

can be a straightforward way to partition the model and has been integrated in PyTorch

and Tensorflow.

The XLA compiler (XLA), provides a framework for optimizing neural network execution

on GPUs and TPUs. Originally introduced for TensorFlow it now has a framework built

specifically for it: JAX. By enabling automatic differentiation and just-in-time compila-

tion, JAX allows models defined in Python-based frameworks to be efficiently executed,

exploiting both data and model parallelism. GSPMD (22) is built as an extension to XLA

and allows for tensors to be annotated by the programmer in order to partition them over

multiple devices. Alpa (23) is an automated approach to partitioning that has similarly

been integrated into XLA. XLA has also been integrated in PyTorch.

Alpa is not the only work that attempts to automate the parallelization of neural net-

works. Auto-parallelism (16) frameworks dynamically determine the best way to parallelize

the model based on the specific hardware and workload. A notable example is FlexFlow

(13), a deep learning framework that uses a novel execution planning algorithm to explore
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2.5 Related work

and identify efficient parallelization strategies. It should be noted that while these frame-

works, although they advertise wide compatibility, are still very experimental and we found

that using them as a is a significant challenge in itself. More experimental approaches are

TensorOpt (4), RaNNC (20), FTPipe (6), and Double Recursive (21).

While (auto-)parallelism frameworks address the challenges of model parallelism from a

system-level perspective, our work focuses on architectural transformations that inherently

improve a model’s suitability for parallel execution. These approaches are complementary.
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Solution Design

We propose three transformations to enhance the suitability of existing neural network

models for model parallelism. Embedded within our three research questions is the notion

that we can transform existing models to improve their characteristics, making them better

suited for parallel execution without compromising accuracy. The transformation process

involves modifying the structure of a model to produce a new variant that meets specific

requirements. In our case, this means adapting the model to maximize parallelism while

maintaining an acceptable level of accuracy. In this chapter, we define the transforma-

tions, and develop a conceptual framework to analyze the impact of these transformations,

allowing us to evaluate their effectiveness in terms of both parallelism and accuracy. The

following sections will detail the specific transformations we propose, their underlying prin-

ciples, and the framework within which they are applied.

3.1 Transformation requirements

What does it mean to increase model parallelism suitability? When do we consider accuracy

is maintained?

3.1.1 Increasing parallelism

As discussed in Section 2.2, there are two types of model parallelism: intra-operator and

inter-operator. To make a model more suitable for either of these types, the transformations

applied should address the specific challenges each type faces.

Homogeneity For a model to be effectively parallelized across multiple compute de-

vices, it must be easy to load balance. A highly heterogeneous model, with vastly different
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computational requirements across its components, presents significant challenges for parti-

tioning over multiple compute devices with similar capabilities. Thus, the transformations

should aim to create computationally identical partitions, facilitating balanced distribution

of the model’s workload across all available devices.

Minimized communication As discussed in Chapter 2, communication between de-

vices is a major bottleneck in distributed computing. Bandwidth and latency of links

between compute devices are orders of magnitude slower than the link of a chip to its

DRAM. Thus, in order to make a model more suitable for model parallelism a transfor-

mation should create partitions in such a way that the communication between them is

minimized.

Configurable partitioning The transformation must be flexible in the amount of par-

allel partitions that are created as the desired amount can depend on various factors not

considered in this thesis such as hardware configuration or specific accuracy requirements.

Thus the transformations should support a configurable degree of parallelism.

Maintaining accuracy Changing the architecture of a model will invariably affect its

accuracy and another requirement of the transformations is to ensure that the impact on

the model’s accuracy is such that it remains useful for its intended tasks. Exactly what

constitutes a “useful for its intended task” will vary from case to case. We aim to minimize

the loss in accuracy as much as possible to cover as many use cases as possible.

3.2 Conceptual framework

To define the transformations that meet our requirements, we must first establish a frame-

work to formally describe the structure of a model. In Chapter 2, we explored the structure

of the Inception-ResNet-V2 model as a hierarchical graph. Consecutive convolutional lay-

ers form a branch, multiple branches constitute a block, and the blocks together make up

the final model. Our framework closely follows this structure and defines a model as a

graph of components at various levels of abstraction.

This framework allows us to reason about a model’s suitability for parallelism as per the

requirements. By describing it as a graph of operators, we can partition the graph and

assess the homogeneity of the partitions by looking at the combined computational load of

the operators within them. Communication requirements can be assessed by examining the
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3.2 Conceptual framework

tensors on the edges that cross partition boundaries. Additionally, this framework allows

us to define operations on the structure in a generic manner, such that the transformations

can be applied to models other than the one used in our case study.

Lastly there is the practical consideration of keeping track of the many models produced

by the transformations in this study, therefore we also introduce a naming scheme based

on the concepts introduced in this section.

3.2.1 Abstraction levels: operators, components, macro graph

Because neural networks are made up of many operators, we will describe their structure

at various levels of abstraction. This approach allows us to maintain oversight in these

massive networks. At the lowest level of abstraction, we define operators. These operators

include a two-dimensional convolution operator, or Conv for short, and a fully connected

layer using the rectified linear unit (ReLU ) as the activation function. We also define more

straightforward operations, such as addition, which performs an element-wise addition of

multiple identically-sized tensors, and concatenation, which combines two or more tensors

into a single one along a certain axis.

These operators are connected together in a directed graph to form a custom component,

or block, such as the Inception-ResNet-A block. A component takes, like an operator, a

tensor as input and produces a tensor as an output. Components are connected together

in what we call a macro graph to form the final network. Thus, there are two levels of

abstraction: operators, which form components, and components, which form the model

as defined by the macro graph.

3.2.2 Naming scheme

We name our model variants based on the macro graph. For example, the Inception-

ResNet as described in the original paper has 5 Inception-ResNet-A blocks, 10 Inception-

ResNet-B blocks, and 5 Inception-ResNet-C blocks. Thus, we would name this model

ResNet_5_10_5. In our work, because we are dealing with degrees of parallelism, we

like to have this easily divisible. Consequently, we compare to a ResNet variant we call

ResNet_4_8_4, which consists of 4 Inception-ResNet-A blocks, 8 Inception-ResNet-B

blocks, and 4 Inception-ResNet-C blocks.

Since the transformations can produce various models based on the configured amount

of parallelism we also include this parameter in the name. For example: Parallel-ResNet-
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2-4-8-4 is the model produced by the first proposed transformation (Section 3.3.1) with 2

degrees of parallelism, 4 A, 8 B, and 4 C blocks.

3.3 Proposed model transformations

We propose 3 transformations: placing sequential cells in parallel, replacing regular convo-

lutions with grouped convolutions, and splitting the entire cell along the channel dimension.

Because the largest part of the network is made up of the repeated instances of the A, B,

and C blocks we only apply our transformations to these parts of the network.

To properly argue that these transformations are an effective way to increase a CNN’s

suitability for model parallelism would require applying the transformation to many dif-

ferent models.

4x

2x

35x35x320

Inception-
ResNet-A

17x17x1088
Reduction-A

8x8x2080
Reduction-B

8x8x2080

+

ReLU

35x35x320

Inception-
ResNet-B+

ReLU

17x17x1088

2x

Inception-
ResNet-C+

ReLU

Inception-
ResNet-C

Inception-
ResNet-B

Inception-
ResNet-A

Figure 3.1: ParallelResNet with 2 parti-
tions. The area marked in green is the main
partition.

This task would demand an amount of com-

pute that is not available to us. Thus we

choose to provide insight into the transforma-

tions by conduction an in-depth case study

in applying them to the Inception-ResNet-v2

model.

3.3.1 ParallelResNet: place se-
quential cells in parallel

To address partition homogeneity in the

Inception-ResNet architecture, we propose a

transformation that increases the network’s

width while reducing its depth. Currently,

the model organizes cells in a feed-forward

sequence, where each cell processes the out-

put of its predecessor. For instance, in the

initial stage, 8 Inception-ResNet-A cells are

processed sequentially. Our transformation

places cells into a parallel structure where ev-

ery cell gets the same input and their out-

puts are added together. By consolidating 2

or more cells into a single parallel block, we re-

move the data dependency between the cells.
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3.3 Proposed model transformations

This means we can exploit parallelism over multiple cells instead of the over the branches

within a cell.

To illustrate this transformation, consider the Inception-ResNet-A subsection. In the

original model, Inception-ResNet-A is executed in sequence four times. By increasing the

width, we duplicate the block and place it in parallel within a single stage, effectively merg-

ing multiple Inception-ResNet-A cells into a wider structure. This parallel architecture,

as shown in Figure 3.1, simplifies load balancing to assigning an equal number of cells to

each compute device, since all of these are identical in computational requirements. Device

utilization is also increased by assigning full cells, allowing compute devices to efficiently

manage larger and more consistent workloads. An important consideration in this trans-

formation is determining the optimal number of cells to place in parallel, which directly

impacts workload distribution, device utilization efficiency, and overall model performance

in diverse computational environments.

3.3.1.1 Fulfillment of requirements

Partitioning Figure 3.1 shows the proposed partitioning scheme for this transformation.

This partitioning scheme is limited by the amount of sequential blocks, meaning we can’t

go above 4 degrees of parallelism. The main partition needs to do slightly more work as it

has to sum the tensors and process the activation function.

Homogeneity Since we’ve placed identical cells in a parallel structure, we can now assign

entire cells to compute devices since there is no more data dependency between them. This

significantly improves the homogeneity of the partitions. There is still a slight imbalance

between them in the processing of the results of the cells. These are added together in

an element-wise fashion, together with a residual connection, and then passed through

an activation layer every parallel stage. While the element-wise addition could be done

through a sum-reduction, the activation layer at least has to be computed on a single

device. Still, compared to the computational load of the cells, this is relatively minimal.

Communication For communication, the input to a parallel cell needs to be broadcast

to all partitions since every subcell needs this entire input. And then, when we add them

all together, we need to send all these output tensors of the cells back to one partition to

be calculated. This means that for every parallel cell, P − 1 input tensors need to be send

to the partitions (The main partition does not need to communicate with itself), and we

need to then also receive P − 1 output tensors on the main partition. This then repeats
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for every sequential repetition. We can do a similar calculation for the other 2 stages with

their respective input tensor sizes to calculate the total communication overhead.

input tensor size︷ ︸︸ ︷
35× 35× 320 ×

non-main partitions︷ ︸︸ ︷
(P − 1) ×

sequential repetitions︷︸︸︷
4/P ×

send & receive︷︸︸︷
2 +

17× 17× 1088 × (P − 1) × 8/P × 2 +

8× 8× 2080 × (P − 1) × 4/P × 2

For 2 partitions the total communication requirements for a single forward pass would

be 1, 568, 000 + 2, 515, 456 + 532, 480 = 4, 615, 936.

3.3.2 GroupedResnet: replace regular convolutions with grouped con-
volutions

1+2+3+4

1 2 3 4

1+2+3+4 1+2+3+4 1+2+3+4

(a) Full Convolution

1+2

1 2 3 4

1+2 3+4 3+4

(b) Grouped Convolution with 2 groups

Figure 3.2: A full convolution (a) and a grouped convolution (b). Both convolution have 4
input channels (1, 2, 3, and 4) and 4 filters producing 4 output channels (blue, green, orange,
and red). While the full convolution takes all the input channels for all filters, the filters in
the grouped convolution only operate on the input channels in their respective groups.

As discussed in Chapter 2 intra-operator parallelism has a very large communication

overhead. We address this by transforming convolutions into grouped convolutions in

the 3 main blocks. Grouped convolutions modify the traditional convolution process by

dividing the input channels into distinct groups, each processed by a separate subset of

filters. A grouped convolution operation partitions the input channels into separate groups

and associates each group with its own set of convolutional filters. This is in contrast to a

full convolution which employs filters that interact with all input channels.

For example, consider a convolution scenario with four input channels labeled 1, 2, 3,

and 4. In a full convolution setup (Figure 3.2a), each filter processes information from all

20



3.3 Proposed model transformations

four input channels to produce an output channel. This means that every output channel

results from a combination of all input channels processed through each filter.

In a grouped convolution, however, the same four input channels are divided into groups.

Figure 3.2b shows what this looks like for 2 groups. Channels 1 and 2 are in the first group,

and channels 3 and 4 in the second. The filters assigned to the first group (blue and green)

only process data from channels 1 and 2. Similarly, filters in the second group (orange

and red) only process data from channels 3 and 4. This setup restricts the data each

filter can access, resulting in output channels that are a product of the data each group

independently.

This method of partitioning not only reduces the computational demands of each filter

but also reduces the communication overhead required when distributing the computation

over multiple devices because only a part of the input tensor is for every group. Furthermore

if the number of groups is kept constant for consecutive convolutions the input channel in

the group of the next convolution are the output channels produced by the same group of

the previous convolution, meaning no communication is necessary between the devices at

this point.

Grouped convolutions, while efficient, can reduce the model’s expressive power by lim-

iting each filter’s access to the full range of input features, potentially missing important

cross-channel interactions. This approach might also lead to a slight decrease in accu-

racy and increased implementation complexity, particularly when handling uneven channel

groups. Additionally, the reduced data per filter could raise the risk of overfitting, as the

model may become too specialized to the patterns within each group.

Although the number of groups in a convolution is implemented as just a parameter on

the ‘Conv’ operator in PyTorch we can represent the concept in the operator graph as a

separate convolution operator for every group, operating on an input tensor that has been

split.

Figure 3.3 shows what ResNet-A block looks like if we use 2 groups for every convolution.

Because the convolutions in the branches all use the same group count this results in 2

subgraphs without any data dependencies. The macro graph is identical to regular ResNet.

3.3.2.1 Fulfillment of requirements

Partitioning Figure 3.3 shows the partitioning scheme of Inception-ResNet-A using

grouped convolutions. As long as the partition count clearly divides all the channel counts

within the cell, which for powers of 2 up to 32 is the case, we can configure our partitioning

without any problems. If the amount of partition does not clearly divide these groups, we
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Figure 3.3: Inception-ResNet-A block using grouped convolutions such as shown in Fig-
ure 3.2b. While these are usually implemented as a single operator, we express it as multiple
operators in the graph here.

need to handle the edge cases in which one of the groups is smaller, which would create

additional implementation work.

Homogeneity The partitions consist of the groups in the convolution layers, as well as

the filter expansion layer for the main partition, and the residual connection. Compared

to the previous transformation where we placed cells in parallel, these partitions are less

homogeneous. Since we added the filter expansion layer to the main partition, as well as

the addition of the output tensors and the activation layer, we do not, however, need to

add as many output tensors, since we only add the output of the filter expansion layer to

the residual connection.

Communication Since every group in the grouped convolution only needs the chan-

nels of the input tensor that are relevant to said group, this method reduces the com-
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munication requirements substantially compared to the previous. Continuing with the

Inception-ResNet-A block as example, every partitions takes 320/P channels and there

are P − 1 partitions that need their input tensor communicated to them. Thus the total

communication cost for the input tensors is: 35× 35× (P − 1)× (320/P ). The communi-

cation requirements for the output tensors can be computed similarly: 35× 35× (P − 1)×
((64/P )+(32/P )+(32/P )). The total communication within a single Inception-ResNet-A

block then is: 35× 35× (P − 1)× (128+320)/P . For the entire model the communication

requirements are:

‘

elements per partition︷ ︸︸ ︷
35× 35× (128 + 320)/P ×

non-main partitions︷ ︸︸ ︷
(P − 1) ×

sequential repetitions︷︸︸︷
4 +

′17× 17× (384 + 1088)/P × (P − 1) × 8 +

8× 8× (448 + 2080)/P × (P − 1) × 4

For 2 partitions the total communication requirements would be 1, 097, 600+ 1, 701, 632+

323, 584 = 3, 122, 816. A significant improvement over ParallelResNet.

3.3.3 SplitResNet: splitting entire blocs along the channel dimension

SplitNet-A
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Figure 3.4: Split-ResNet-A block
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Figure 3.5: Model after SplitNet transfor-
mation with two partitions.

To further reduce communication we propose

extending the concept of grouped convolu-

tions to the rest of the cell by splitting all

the layers along the channel dimension. This

eliminates the need for communication not

only within a single instance of a block but

also between consecutive blocks as long as

the group count remains constant. Figure 3.4

shows what the new SplitNet-A block looks

like for the case of 2 partitions. Compared to

Figure 2.2a the channel dimension has been

reduced by a factor equal to the amount of

partitions, in this case it is halved through-

out the block.

Figure 3.5 shows SplitNet-A, B, and C

placed in the macro graph.

3.3.3.1 Fulfillment of requirements

Partitioning The proposed partitioning

scheme for this transformation can be seen

in Figure 3.5. It’s limitations are similar to

that of GroupedResNet in that the degree of

parallelism has to cleanly divide the channel

counts. A benefit is that within the repeated

sections there is no load imbalance.

Homogeneity Cells are completely identi-

cal, even the residual connection is split now.

The split, and concatenation of the tensors

are very cheap operations. The reduction cells

are still done on main partition.

Communication This transformation elim-

inates all communication within the three ma-

jor stages, only requiring the split tensors be
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distributed across the partitions at the start and gathered at the end. Thus in total for P

partitions 3 × (P − 1) × 2 tensors have to be communicated. The total amount of tensor

values that need to be communicated for P partitions is:

elements per partition︷ ︸︸ ︷
35× 35× (320/P ) ×

non-main partitions︷ ︸︸ ︷
(P − 1) ×

send & recv︷︸︸︷
2 +

17 ∗ 17 ∗ (1088/P ) × (P − 1) × 2 +

8 ∗ 8 ∗ (2080/P ) × (P − 1) × 2

This shows that, similar to GroupedResNet, the size of these tensors goes down as the

amount of partitions increases.

For two partitions this would amount to 392, 000 + 314, 423 + 133, 120 = 839, 552.

3.4 Implementation

Implementation was done in PyTorch. For the Inception-ResNet-v2 model, we used a

publicly available implementation on GitHub1. The transformed models each have their

own implementation.

Grouped ResNet was implemented simply by using the groups parameter in PyTorch’s

Conv2d operator. Parallel ResNet was implemented by wrapping the original ResNet blocks

into a new parallel block that distributes the input to sub-blocks and then gathers the

output. Split ResNet was created by using the parallel block from Parallel ResNet with

new variants of the Inception-ResNet A, B, and C blocks, where all their channel counts

are divided by the number of parallel partitions.

3.4.1 Automatic parameter exploration

Transformed models can be instantiated using a configurable number of parallel partitions,

as well as configurable repetitions of the A, B, and C blocks. Given the large amount of

configurations that need to be explored we have a wrapper script for the models that reads

a list of parameters from a file and trains a model with every set of parameters.

1https://github.com/FelixBrakel/HPCNas
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Solution Evaluation

4.1 Short, and automated training setup

The models presented in this thesis were implemented using PyTorch, a widely used deep

learning framework. The training of these models was conducted on the Distributed ASCI

Supercomputer 6 (DAS-6) (1). For every model we leveraged 4 NVIDIA A4000 GPUs

placed on a single node, arranged in a data-parallel configuration1. With the DAS-6

having two such nodes, we were able to train up to two models at a time. To further

accelerate the training process, we utilized automatic mixed precision (AMP)2 during the

training sessions. AMP is a technique that automatically uses lower precision datatypes

where possible to reduce memory usage and improve throughput. As noted in Section 2.4

Incetpion-ResNet-v2 was trained and tested on the ImageNet dataset. This dataset con-

tains 146GiB worth of images grouped into 1000 classes. Training all 6 model variants as

well as the baseline ResNet model on this 146GiB dataset on the available hardware is not

feasible for us. Thus we have come up with a shortened training setup where we train and

evaluate our models on a subset of 100 out of the 1000 classes in the ImageNet dataset,

which were selected randomly. This both reduces the time to do an epoch as well as the

total amount of epochs needed to train the models.

In order to automate evaluation of the models some system is needed with respect to

the learning rate. Because every model behaves slightly differently, we utilize a dynamic

learning rate that decays by a factor of 0.8 every time the validation accuracy does not show

an improvement for 2 epochs. If the validation accuracy does not improve after decaying

the learning rate three times, then the training process stops. This trains all the models

1https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html
2https://pytorch.org/docs/stable/amp.html
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until convergence. While it is possible to manually optimize this training setup in order

to speed up training further, this is not the goal of this training setup. The goal of this

study is to obtain insight of the performance difference of all the models, while requiring

no manual intervention in the training process. Therefore a training setup that manages

to showcase this differences for all models, without manually having to tune the learning

process for every model, is sufficient.

We test our 3 transformed models: ParResNet, GroupedResNet, and SplitResNet, at 1,

2, and 4 degrees of parallelism. With a single degree of parallelism being the same as the

baseline ResNet and serving as validation for the results.

Model Degree of Inception- Inception- Inception-
Parallelism ResNet-A ResNet-B ResNet-C

ResNet 1 4 8 4

ParResNet
1 4 8 4
2 2 4 2
4 1 2 1

GroupedResNet
1 4 8 4
2 4 8 4
4 4 8 4

SplitResNet
1 4 8 4
2 4 8 4
4 4 8 4

Table 4.1: Model Configurations: Parallelism and Number of Inception-ResNet Blocks

Table 4.1 lists the structure of all ResNet model variants we evaluate, with their degree

of parallelism and the number of Inception-ResNet-A, B, and C blocks. In total we train

and evaluate 10 models: one baseline and three times three transformed models. The

1_4_8_4 variants across all models have the same configuration as the regular ResNet,

serving as a sanity check to ensure the consistency of the modifications. All models, except

ParResNet, maintain the structural design of the baseline ResNet while varying the degree

of parallelism. ParResNet differs by distributing the same total number of blocks across

the stages in a parallel manner. This parallelism reduces the depth of the network, as fewer

blocks are stacked sequentially in each stage.

Three-fold cross-validation was employed to evaluate the performance of the different

ResNet model variants. In this approach, the dataset was split into three subsets, train,

validation, and test, in 3 different non-overlapping ways or “folds”. Each model was then
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trained and evaluated three times on every fold of which we take the average. This method

helps to mitigate any bias resulting from the 3-way split and provides a more reliable

measure of how the models are expected to perform on unseen data.

4.2 Classificantion Accuracy

4.2.1 Parallel ResNet

Figure 4.1: Parallel ResNet top1k accuracy against ResNet

Figure 4.1 compares the performance of different ParallelResNet configurations against

the baseline ResNet model across three-fold cross-validation. The horizontal red dashed

line indicates the median accuracy of the ResNet configuration (1_4_8_4), which serves

as a baseline reference. As mentioned before, the 1_4_8_4 ParResNet configuration is

identical to the baseline and serves as a sanity check. The median of both models are almost

identical (0.7128 and 0.713) so this passes the sanity check. The 2_2_4_2 and 4_1_2_1

configurations of ParResNet have median accuracies slightly below the ResNet baseline

(0.7091 and 0.7077 respectively), with each increase in parallelism slightly decreasing the

classification accuracy. Interestingly, the variability observed in ParResNet’s configurations
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suggests that while the newly introduced parallelism might reduce overall accuracy, it does

perform more consistently compared to the baseline as the first quartile of these models

are significantly closer to the median. Overall, while classification accuracy decreases, the

difference between the model variants is very small (≤ 0.51%).

4.2.2 Grouped ResNet

Figure 4.2: Grouped ResNet top1k accuracy against ResNet

Figure 4.2 compares the performance of different GroupedResNet configurations against

the baseline ResNet model across three-fold cross-validation. Again, the red dashed line

indicates the median accuracy of the baseline. The sanity check configuration of Groupe-

dResNet, shows a slightly lower median accuracy of 0.7122 compared to the baseline. This

minor difference still passes our sanity check. The 2_4_8_4 and 4_4_8_4 configura-

tions of GroupedResNet demonstrate median accuracies of 0.7183 (the highest of all the

models) and 0.7165, respectively, both slightly above baseline. This indicates that intro-

ducing more groups in these configurations can potentially lead to improved performance.

Overall the GroupedResNet configurations offer a small accuracy improvement over the

baseline ResNet. The difference in performance between the model variants is relatively
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small (≤ 0.55%), but with the increased suitability for parallelism this transformation

offers benefits on both fronts.

4.2.3 Split ResNet

Figure 4.3: Split ResNet top1k accuracy against ResNet

Finally, Figure 4.3 compares the performance of different SplitResNet configurations against

the baseline. The 1_4_8_4 configuration of SplitResNet shows a median accuracy of

0.7119. The 2_4_8_4 and 4_4_8_4 configurations demonstrate median accuracies of

0.7045 (the lowest of all the models) and 0.7114, respectively. Both configurations have

medians that are slightly below the baseline. The variability in the SplitResNet configu-

rations is more pronounced, particularly in the 1_4_8_4 setup, which shows a broader

interquartile range compared to the other configurations. This suggests that while the

SplitResNet approach can maintain performance close to the baseline, the split architec-

tures introduce more inconsistency.

Thus, while the SplitResNet configurations generally perform close to the baseline, they

introduce slightly more variability. Still the overall difference in accuracy between SplitRes-

Net variants and the baseline is small (≤ 0.83%), but larger than the other models.
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4.3 Accuracy on second dataset

Figure 4.4: Grouped ResNet top1k accuracy against ResNet

Figure 4.5: Grouped ResNet top1k accuracy against ResNet
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4.3 Accuracy on second dataset

Figure 4.6: Split ResNet top1k accuracy against ResNet

Overall all the models perform slightly better on the second dataset and show a smaller

overall spread in results. The ResNet baseline had a median accuracy of 0.7268. Groupe-

dResNet in its 2_4_8_4 configutation is the only one that shows a significant difference

compared to ResNet and performs best of all with a median of 0.7432. It also performed

best on the first dataset. ParResNet 4_1_2_1, which was second lowest on the first

datset, performs worst at 0.7221, only 0.0047 more than ResNet. SplitResNet performs

significantly better on the second dataset and is within margin of error of ResNet across

its configurations. A significant improvement compared to its performance on the first

dataset where it performs worst of all.
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5

Conclusion

This thesis delves into the challenges and opportunities involved in optimizing neural

network models for model parallelism. To address the first research question, "What

transformations make an existing architecture more suitable for model parallelism?", we

proposed three key transformations: ParallelResNet, which places sequential cells in par-

allel; GroupedResNet, which replaces regular convolutions with grouped convolutions; and

SplitResNet, which splits entire blocks along the channel dimension. Each transformation

was designed with a specific partitioning scheme in mind, aimed at minimizing communi-

cation overhead and ensuring a balanced distribution of computational complexity across

partitions, thereby enhancing the model’s suitability for parallel execution.

To explore the second research question, "What is the influence of these transformations

on accuracy?", we conducted a case study on the Inception-ResNet-v2 model, applying

our transformations to introduce two-way and four-way parallelism. This study allowed us

to evaluate the impact of the proposed transformations on model accuracy, demonstrating

that while there may be some trade-offs, the overall performance of the transformed models

remained competitive. Our findings confirm that these transformations can be effectively

applied without significantly compromising the model’s predictive capabilities.

Finally, we addressed the third research question, "What is the generality of these trans-

formations with regards to varying datasets?", by training the transformed models on two

distinct datasets, each consisting of 100 classes. The results showed that our transforma-

tions are generalizable across different datasets, reinforcing the broader applicability of our

approach. These insights suggest that the proposed transformations are not only effective

but also versatile, making them valuable tools for optimizing neural network models for

parallelism in a variety of contexts.
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5.1 Future work

As noted in Section 3.1 there is a minimum accuracy that our transformations should exceed

in order to be useful. However we found that on our classification task of 100 classes all

models perform very close to each other, making it hard to show the true impact of our

transformations. It is possible to adjust the model such that it shows more pronounced

differences on the simplified problem, this required simplifying the stem and reduction cells,

reducing the channel dimension by a factor of 4 across the entire model, and reducing the

size of the final fully connected layer at the end by a factor of 4 as well. We consider these

changes to be so drastic that we have opted not to use this model as a baseline, we do

report the findings of our experiments in Section 5.1. However a more robust way to test

the influence of the transformations on accuracy would be to train and evaluate on a more

complex dataset, the full 1000 classes of ImageNet for example.
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Appendix

Alternate Baseline Model Experiments

As noted in Section 3.1 there is a minimum accuracy that our transformations should

exceed in order to be useful. We defined this as a model with half the amount of layers.

However we found that our simplified problem of 100 classes instead of 1000 significantly

changed the characteristics of the model. Figure 5.1 shows that the shallow models, that

is models with fewer layers, performed better than the deep models.

Figure 5.1: Performance of the Inception-ResNet-v2 models at various depths

While part of this behavior might be to our training setup, we opt to introduce changes

into the model in order to establish a baseline, rather than reengineer the training setup.

In order to establish a baseline model we have made a number of adjustments that greatly
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simplify the Stem (Figure 5.2a), Reduction-A (Figure 5.2b), and Reduction-B (Figure 5.2c)

cells. These new cells still transform the input and output tensors to the same shape, reduc-

ing the spatial dimensions and increasing the channel dimension, but feature significantly

fewer operators.

Small-Stem

32

Conv 3x3

3
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64

MaxPool 3x3

320
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(b) Small Reduction A
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(c) Small Reduction B

Figure 5.2: New Small Reduction Modules

The maxpool operator is retained as in our testing removing this would cause the training

loss to not converge.
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Figure 5.3: Performance of the Baseline models
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