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ABSTRACT

Subatomic particle track reconstruction (tracking) is a vital task in
High-Energy Physics experiments. Tracking is exceptionally com-
putationally challenging and fielded solutions, relying on traditional
algorithms, do not scale linearly. Machine Learning (ML) assisted so-
lutions are a promising answer. We argue that a complexity-reduced
problem description and the data representing it, will facilitate the
solution exploration workflow. We provide the REDuced VIrtual
Detector (REDVID) as a complexity-reduced detector model and
particle collision event simulator combo. REDVID is intended as a
simulation-in-the-loop, to both generate synthetic data efficiently
and to simplify the challenge of ML model design. The fully paramet-
ric nature of our tool, with regards to system-level configuration,
while in contrast to physics-accurate simulations, allows for the
generation of simplified data for research and education, at different
levels. Resulting from the reduced complexity, we showcase the
computational efficiency of REDVID by providing the computa-
tional cost figures for a multitude of simulation benchmarks. As a
simulation and a generative tool for ML-assisted solution design,
REDVID is highly flexible, reusable and open-source. Reference
data sets generated with REDVID are publicly available. Data gen-
erated using REDVID has enabled rapid development of multiple
novel ML model designs, which is currently ongoing.
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1 INTRODUCTION

In many computational sciences, the adoption of ML-assisted solu-
tions can lead to serious gains in computational efficiency and data
processing capacity, resulting from algorithmic advantages intrinsic
to ML. Computational efficiency can also be achieved by paving the
way for the utilisation of dedicated hardware, i.e., GPUs, FPGAs and
purpose-built accelerators. ML algorithms are highly compatible
with the use of such specialised hardware. In this work, we explore
the use of ML-assisted techniques in high-energy physics.
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The process of ML-assisted solution design is an explorative and
data-demanding endeavour. One of the effective approaches to
achieve a suitable design is Design-Space Exploration (DSE). How-
ever, DSE suffers from the fact that direct exploration for solutions
addressing complex problems consume high amounts of time and
energy. Complex problems involve many parameters, contributing
to a space with many dimensions, which in turn deems the explo-
ration expensive. As a result, there is often a need for simplification
of the problem domain, i.e., search-space reduction, to facilitate the
initial steps within this explorative process.

Generative elements are often needed as part of the explorative
process, to enable synthetic data generation in large quantities, at
will. Furthermore, designing and training models with better rigour
requires total control over all aspects of data generation. Providing
sufficient control and on demand ability to synthesise data that is
representative of corner cases contributes to achieving effective
models. Such corner cases seldom/disproportionally appear in real-
world data or highly accurate, i.e., physics-accurate, simulation data.

Use-case. Our focus is a major use-case from the field of High-
Energy Physics (HEP), the critical task of subatomic particle track
reconstruction (tracking), which is present in data processing for
experiments performed at the Large Hadron Collider (LHC). Detec-
tors such as ATLAS, record interaction data of subatomic particles
with detector sensors, allowing physicists to reconstruct particle
trajectories through tracking algorithms and to gain knowledge
on how subatomic particles behave. The current tracking solutions
relies largely on traditional, computationally expensive statistical
algorithms, with Kalman filtering as their most demanding block.
Even with constant efforts channelled into better parallelisation
schemes for these algorithms, the data consumption capability is
rather limited. The challenge will be even greater with the upcom-
ing High-Luminosity LHC upgrade [3], given its increased data
volume generation and experiment frequency.

Although physics-accurate simulators, such as Geant4 [1], are
readily available, applying such levels of accuracy to generative ele-
ments comes at a hefty computational cost. Accordingly, these sim-
ulators are not suitable for frequent timely executions and constant
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data generation, as required for DSE iterations. As such, we propose
an exploration methodology that can be much faster, through the
informed simplification of the design-space for the ML-assisted
solution. Our methodology is specifically being considered for the
tracking use-case. To this end, we have designed and implemented
the REDuced VIrtual Detector (REDVID), to both simplify the prob-
lem at hand and act as an efficient tool for frequent simulations
and synthetic data generation. While our tool is not a fully physics-
accurate one, it does respect the high-level relations present in
subatomic particle collision events and detector interactions. RED-
VID is fully (re)configurable, allowing definition of experiments
through varying detector models, while preserving the cascading
effects of every change.

Considering possible complexity reduction strategies, the spec-
trum varies from physics-accurate data manipulations, e.g., dimen-
sionality/granularity reduction, to omitting the scenario interac-
tions beforehand. A strategy solely based on data reduction will
fail to preserve the behavioural integrity of the system, as it will
fail to propagate cascading effects resulting from reductions. Even
simplified examples such as the TrackML data [2] are too complex.

Contribution. We provide REDVID, an experiment-independent,
fully (re)configurable, and complexity-reduced simulation frame-
work for HEP [20]. Simulations consist of complexity-reduced de-
tector models, alongside a particle collision event simulator with
reduced behavioural-space. REDVID is intended as a simulation-in-
the-loop for ML model design workflows, providing:

e ML model design - Problem simplification facilitates ML so-
lution design, as opposed to real-world use-case definitions,
which are often too complex to negotiate directly.

e Parametric flexibility - The model generator is capable of
spawning detectors based on reconfigurable geometries.

e Computational efficiency - Behavioural-space reductions di-
rectly improve event simulation and processing times.

Our other contributions include:

e Supporting pedagogical tasks in higher education by present-
ing complex interactions from HEP experiments through sim-
plified and understandable data.

e Publishing open reference data sets, which are of independent
interest for physicists and data scientists alike [21, 18].

Outline. Section 2 provides the background on HEP experiments
and similar simulators. In Section 3, we provide the design details
considered for REDVID. Notable implementation techniques are
elaborated in Section 4. Data set related results are given in Section 5,
followed by Sections 6 and 7, covering the relevant literature and
our conclusions, respectively.

2 BACKGROUND AND MOTIVATION

In this section we elaborate the premise of HEP experiments, as well
as the role of simulation in these, to get familiar with the context
of our use-case.

2.1 HEP experiments

When talking about HEP experiments, we refer to high-energy par-
ticle collision events. Two types of collision experiments are per-
formed at LHC: proton-proton and ion-ion collisions. Protons are
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extracted from hydrogen atoms, while ions are actually heavy lead
ions. Beams of particles are sent down the beam pipe in opposing
directions and made to collide at four specific spots. These four
spots are the residing points of the four major detectors installed
at LHC, namely, ALICE [9], ATLAS [10], CMS [11] and LHCb [12].

Take the ATLAS detector for instance. The role played by ATLAS
in the study of fundamental particles and their interactions, rely
on two main tasks, tracking and calorimetry. Through tracking, i.e.,
particle track reconstruction, the momentum, p, of a particle can be
calculated, while the energy, E, is calculated through calorimetry.
Having the momentum and the energy for a given particle, its mass,
m, can be determined, following the energy-momentum relation
expressed as,

E? = (mc®)? + (pc)z.

In the above equation, ¢ represents the speed of light and is a con-
stant. The mass measurement allows the study of the properties for
known particles, as well as potentially discovering new unknown
ones. As such, it is fair to state that particle track reconstruction is
one of the major tasks in high-energy physics.

2.2 Role of simulation in HEP

Simulation allows for, amongst others, the validation and train-
ing of particle track reconstruction algorithms. Two distinguished
stages are considered for HEP event simulations, i.e., physics event
generation and detector response simulation [15]. Event generation
as the first stage, involves the simulation of particle collision events,
encompassing the processes involved in the initial proton-proton
or ion-ion interactions. Event generation is governed by intricate
sets of physical rules and is performed by software packages such
as Herwig [13] and Pythia [23], i.e., physics-accurate simulations.

Detector response simulation, the second stage, integrates the
movement of the particles generated by the first stage through a
detector geometry, simulating the decay of unstable particles, the
interactions between particles and matter, electromagnetic effects,
and further physical processes such as hadronisation. Common
event simulators providing such functionality include Geant4 [1],
FLUKA [5] and MCNP [16]. In accelerator physics applications,
event simulators are used to simulate the interactions between
particles and sensitive surfaces in an experiment, as well as with
so-called passive material, such as support beams. Interactions with
sensitive surfaces may undergo an additional digitisation step, sim-
ulating the digital signals that can be read out of the experiment.
Considering the example of ATLAS, three data generating simula-
tors are notable, namely, Geant4, FATRAS [15] and ATLFAST [22].

Following the Monte Carlo simulation approach, FATRAS has
been designed to be a fast simulator. It is capable of trajectory build-
ing based on a simplified reconstruction geometry and does provide
support for material effects, as well as particle decay. FATRAS also
generates hit data.

ATLFAST follows a different approach towards trajectory simula-
tion and doesn’t generate hit data, making it unsuitable for tracking
studies. ATLFAST relies on hard-coded smearing functions based
on statistics from full simulations. These functions are dependent
on particle types, momentum ranges and vertex radii. Such details
are specific to the design elements of the virtual detector geometry.
A change in the design will require finding new functions.
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REDVID fills the gap for a reconfigurable framework that is
suitable for first-phase solution exploration and design. This is due
to the deliberate reduction in complexity, for both the generated
data and the problem description, while keeping the high-level
causal relations in place. REDVID is end-to-end parametric, i.e.,
all the generated data is built upon the detector geometry and
randomised particle trajectories, both reconfigurable. REDVID has
been developed in Python, making its integration with Python-
based ML design workflows seamless. Figure 1 plots REDVID’s
positioning versus other well-known tools, as we consider it.
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Figure 1: Simulation complexity spectrum is shown from the
most simplistic to the most realistic, with high complexity
rates for both model and simulator. Depending on the en-
abled features, different simulators are capable of providing
different levels of complexity, depicted as grey areas. ATL-
FAST is not included for lack of hit data generation. Note that
the figure does not cover data reduction strategies, which are
not relevant to changes in model or simulator complexity.

3 SIMULATION APPLICATION AND DESIGN

The underlying question here is what is a good strategy for design-
ing and training a capable and rigorous ML model to predict the
behaviour of a (complex) real system? The higher the complexity
of the system and its associated data, the harder it is to arrive at
an efficient ML model design solving the task. Generally speaking,
complex tasks require larger models, which in turn require more
training and more data. For our HEP use-case, the system is already
complex; and when considering the upcoming High-Luminosity
LHC upgrade [3], this complexity will increase even further. As
such, when looking for an ML-assisted solution for HEP track-
ing, we need to efficiently explore a large set of options, and will
consequently require lots of data.

Addressing complex real-world tasks directly will require syn-
thesising close to real-world data, which can be performed by high-
accuracy simulations. High-accuracy simulations in general, and
physics-accurate simulations in particular, are extremely expensive
computational tasks. Having such tools as part of an exploration

workflow, e.g., a ML model design workflow, triggering frequent ex-
ecutions of the simulation with altered configuration, will inevitably
turn into a serious challenge. Even if there are accommodating hard-
ware resources available, algorithmic limitations will turn software
tools into workflow bottlenecks. Yet another notable drawback is
the high cost of energy when running frequent computationally
expensive tasks. To alleviate this massive challenge, it is highly
beneficial, and perhaps necessary, to not only design reduced mod-
els and simulators!, but to provide parametric (re)configurability to
support automated exploration.

However, the initial testing of new ML-assisted solutions, i.e., ML
model designs, does not require the ground truth, which physics-
accurate simulations are designed to produce. Instead, we argue that
a cost-effective and reduced simulation, preserving the behavioural
relations of the complex system (proton-proton/ion-ion collision
event experiments), can be better and more effectively integrated
in ML model design workflows, as shown in Figure 2.

3.1 Reduction approach

Simulations of complex systems include virtual models that mimic
the behaviour of the system under scrutiny. On the one hand, the
amount of detail included in the model, as a virtual representation
of the complex system, will directly affect the approximation level
of the simulation. On the other hand, the extent of behaviour con-
sidered by a simulator while executing the model will determine
the overall achieved complexity. Having a validly approximate rep-
resentation is achieved through the reduction of the behavioural-space
to a minimal subset, best encapsulating the complex system. Both
model complexity and simulator complexity can be targets of such
a reduction. The first and foremost effect of an approximate sim-
ulation is better computational efficiency. Note that there can be
many such approximations, depending on the intended balance
between computational efficiency and behavioural approximation
level. The other advantage, especially when it comes to ML model
design processes, is facilitation of an effective model design by
providing a middle ground that has a lower complexity and can be
used for better understanding of the challenge and testing of the
early designs, before addressing the full real-world case.

Solution exploration/design in general, and solutions based on
ML models in particular, has always benefited from methodical
simplification of the problem at hand. For a system operating over
a broad behavioural-space, such a simplification is often mani-
fested by means of high-level modelling. Both actual experiments
and physics-accurate simulations for our use-case, i.e., proton-
proton/ion-ion collision events inside a detector such as ATLAS,
are immensely complex. Removing (some of) the physics-accurate
constraints results in major behavioural-space reductions. This ap-
plies to both the detector model and the behaviour affecting the
event simulator. While moving away from physics-accuracy, our
aim has been to conserve logical, mathematical and geometrical
relations, which would provide the basis for a flexible parameterisa-
tion. Preserving relations between interacting elements of a system
preserves occurrence of cascading effects when the system is being
steered through reconfiguration. For instance, a change in the struc-
tural definition of the detector model will affect the recorded hit

A model and a simulator go hand in hand to form a simulation.
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Figure 2: An overview of a reduced simulation as part of a ML model design workflow, e.g., a Neural Architecture Search (NAS),
by providing the data set. This paper focuses on the area with the yellow fill, covered by our simulation tool, REDVID.

points during the event simulation. It must be noted that we have
intentionally avoided the time dimension complexities. Accordingly,
a list of major reductions that we have considered follows.

Simplified detector geometry. The real detector has a complex
geometry, with many small sensors acting collectively to record
particle interactions. For instance, a barrel sub-detector type is built
using many smaller modules, ultimately forming a cylindrical shape.
There are also supporting subsystems, e.g., for cooling, which oc-
cupy parts of the detector space. We have considered much simpler
elements for the geometry of our virtual detector model, consisting
of elements with disk or cylinder shapes, ultimately arriving at a

Reduced-Order Model (ROM).

Particle types. The particle type plays a major role in its traversal
path through the detector. In fact, as stated in Section 2, one of the
major applications of track reconstruction is to assign the particle
type. Currently, we do not consider explicit particle types in our
event simulator. The track type variation however, could be seen
as a consequence of differing particle types.

Simplified tracks. In the real detector, tracks follow an arc of
helix like path and not an exact one. This path is not the case for
all particles and the charged characteristic of a particle of interest
is a defining factor. Currently, we consider particles traversing a
linear (straight), helical uniform, or helical expanding paths. The
linear case indirectly suggests that either the single particle type we
consider is one with no charge, or alternatively, we do not consider
a magnetic field, which is present in the real detector. Helical tracks
could be seen as the effect of a magnetic field on charged particles.

Collision points. The real experiments involve multiple collisions
happening almost at the same time. The collision points will not be
at the same spot. Even the collision of interest that is intended for
track reconstruction will not perfectly align to the detector’s origin
point. The neighbouring collisions will also pollute the detector
readings with particles associated to them. We consider a single
event at the origin for linear tracks and a non-aligning one for
helical tracks, i.e., origin smearing.

Hit coordinates smearing. When it comes to instrumentation
noise, there is no well-defined grand complication present. The
amount of noise in real experiments depends on the characteristics
of the sensors and material. We introduce noise in our hit calcula-
tions and hit coordinate parameters by drawing random samples

from a Gaussian distribution. We also consider the noise standard
deviation as proportional to the variable range. Like the rest of
REDVID’s features, the noise ratio can be adjusted by the user.

3.2 Detector model

At its core, a detector model is comprised of the geometric def-
initions of the included elements, shapes, sizes, and placements
in space. Although we can support a variety of detector geome-
tries, the overall structure, especially for our experimental results,
is based on the ATLAS detector. Accordingly, there are four sub-
detector types, Pixel, Short-strip, Long-strip and Barrel. The pixel
and the barrel types have cylindrical shapes with the pixel being
a filled cylinder, while the barrel being a cylinder shell with open
caps. These are not hard requirements, as the geometry is fully
parametric, and differing definitions can be opted for, e.g., a pixel as
a cylinder shell. The long-strip and the short-strip types are primar-
ily intended as flat disks, but can be defined as having a thickness,
rendering them as cylinders. Sub-detector types can be selectively
present or absent. Figure 3 depicts a representative variation of the
detector geometry involving the aforementioned elements.
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Figure 3: The fully parametric detector geometry, allowing
for inclusion/exclusion of different sub-detector types, with
full control over sub-layer counts, sizes and placements.
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Structurally speaking, in a real-world detector, like ATLAS, the
internals of short-strip and long-strip sub-detector types are differ-
ent. We on the other hand, reduce such complexities to placement
location and size, i.e., distance from the origin and sub-detector disk
radius. Note that our geometric model does support disk thickness,
which basically would turn disks into shallow cylinders. However,
we have considered flat disks for our experiments.

3.3 Particle collision event simulation

As mentioned above, one of the simplifications for our complex-
ity reduction approach is to consider a single collision per event,
aligning exactly to the origin point of the detector geometry for
the linear case. However, the list of complexities, even without the
polluting effects of multiple collisions, is extensive. Particles travel-
ling through the detector matter could lead to secondary collisions,
resulting in drastic changes in their trajectory. Such secondary col-
lisions could also lead to the release of particles not originating
from the collision event itself. These will show up as tracks with
unusual starting points within the detector space, rather distant
from the collision point. Some particles could also come to a halt,
which would be seen as abruptly terminating tracks.

Such physics-accurate behaviour of particles interacting with
the present matter in detectors is not considered for our simula-
tor. It must be noted that the generation of tracks originating far
away from the origin and prematurely terminating tracks, can be
emulated in our simulator in a randomised fashion.

4 IMPLEMENTATION

Though our detector generator and event simulation modules sup-
port both two-dimensional (2D) and three-dimensional (3D) spaces,
we will focus on the implementation details relevant to the three-
dimensional case. Let us simply mention that the main difference
between the two would be the presence of circles and cylinders for
2D and 3D spaces, respectively. One can consider the rather sim-
plistic 2D space as a form of sanity check set-up for initial testing of
techniques and methodologies of ML-assisted solution workflows.
REDVID is open source [19] and has been developed in Python.

4.1 Modules

Considering the tasks at hand, detector spawning and event simula-
tion, our software can be divided into three main logical modules:

e Detector generator - To spawn a detector based on the pro-
vided geometric specifics and configuration.

e Event simulator - To execute experiments involving many
events, following the experiment configuration, e.g., hit prob-
ability, number of tracks (fixed/variable), track randomisation
protocol, etc.

e Reporting - To collect the expected output, i.e., the generated
data set, as well as automated report generation on important
configuration and a statistical overview of the data set.

An overview diagram of the modules is depicted in Figure 4.
The current implementation considers the sequential execution of
modules in the order given above. However, one can easily gener-
ate detectors without simulating events, or simulate events with
previously generated detectors, or even calculate hits based on pre-
viously generated tracks. Such input/output capability will allow

our software to interact with other commonly utilised tools. The
main configuration parameter defining the execution path within
our tool is the detector_type, which can be 2D or 3D.

4.2 Coordinate systems

For the case of the 3D space, we have opted for the cylindrical co-
ordinate system to represent all elements, i.e., sub-detectors, tracks
and hits. The cylindrical coordinate system, depicted in Figure 5, is
a convenient choice, as we are considering the Z-axis as the beam
pipe in LHC experiments and all geometric shapes defined within a
detector, whether disks or cylinders, are actually of the type cylin-
der. The three parameters to define any point in the cylindrical
coordinate system are the radial distance from the Z-axis, the az-
imuthal angle between the X-axis and the radius, and the height of
the point from the XY-plane, i.e., r, § and z, respectively.

Note that in terms of the orientation of the coordinate system,
we consider the Z-axis to be horizontal. With the assumption of the
beam pipe’s alignment along the Z-axis, this is the most convenient
orientation for defining different geometric elements.

In this coordinate system, hit points can be precisely defined
given the tuple (rp;z, Opis, znir). Geometric shapes can also be de-
fined with boundaries for rgy and z,4, e.g., a disk will have fixed z,4,
unbounded 6 and bounded r,;. Here sd stands for sub-detector. Our
software does support partial disks, i.e., a disk with a hole in the
middle, which can be considered when the beam pipe is expected to
be part of the geometry. Disks with thickness (cylinders) will have
a small boundary for the parameter z,;. As previously explained,
short-strip and long-strip sub-detector types are defined as disks.
For the pixel type, as it is a filled cylinder, both rg; and zs4 will be
bounded. When it comes to the barrel type, as it is a cylinder shell,
there will be a fixed ryy with bounded z, .

To implement linear tracks and to define them in the cylindrical
coordinate system, both a direction vector and a point, Py, that the
track (line) goes through are needed. The direction vector, Vy, is
considered as a vector from the origin, landing on a point in space,
represented with a tuple (rg, 04, z4). The direction vector is ran-
domised and then normalised for the z parameter, meaning that the
direction vector will either have z; = 1 or z; = —1. The boundaries
of this randomisation depend on the track randomisation protocol,
explained in the next section. If we consider all linear tracks as
starting from the detector origin, the point (0, 0, 0) is considered on
the track. However, this is rarely the case. The resulting parametric
form of a track (line) is,

rot+t-rg,

0

z=2z0+t: 24,

90+9d,

with (7, 0, z) representing a point on the track, (ro, 6o, zo) as the ori-
gin point, (rg, 04, z4) as the direction vector, and t as free variable.

Following a similar approach, the parametric form for non-linear,
i.e., helical, track definitions is,

r=rota-t,
0=00+d-t,
z=2zp+b-t,
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Figure 4: An overview of the REDVID modules, including a detector model generator, an event simulator, generating randomised
tracks and calculating sub-detector hit points based on tracks and geometric data, as well as different reporting elements.
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Figure 5: Basic definition and parameters of the cylindrical
coordinate system, radial distance, azimuthal, height (r, 0, z),
which is the basis of our geometric structures.

with (7, 6, z) representing a point on the track and (ro, 6o, z9) as the
origin point, while a, d and b represent radial, azimuthal and pitch
coefficients, respectively.

Regarding both linear and helical tracks, our software supports
origin smearing, i.e., the starting point of helical tracks is in a
randomised vicinity of the point (0,0, 0).

4.3 Track randomisation protocols

As seen in Figure 4, the track randomisation step directly affects
sub-detector hit calculation and is totally dependent on the ran-
domisation protocol indicated in the configuration. Focusing on
the implementation for the 3D space, different track randomisation
protocols can be considered. We list four base protocols and five
combination protocols, mixing the characteristics of base protocols:

Protocol 1 - Last layer hit guarantee. Hits are guaranteed to oc-
cur on the farthest layer of every sub-detector type, which means
the farthest layer of every sub-detector type is the randomisation
domain for the landing points of tracks. A hit guarantee on the last
layer will also guarantee hits on the previous layers for that sub-
detector type. This protocol is designed to maximise the number of
hits per sub-detector type within the data set.

In principle, our implementation applies Protocol 1 per each
available sub-detector type and randomly selects from the total
generated track pool. Since for instance, if a track lands on the last
layer of strip sub-detector types, it might not necessarily result in
hit points on barrel layers.

Protocol 2 - Spherically uniform distribution. To have a more
uniform distribution of randomised tracks, without imposing any
geometric conditions, is to have the track end points land on a
sphere. Note that tracks do not have actual end points as these are
unbounded lines.

Protocol 3 - Conical jet simulation. Tracks are randomised in
distinct subsets, bundled in a close vicinity within a narrow cone,
representing a jet(s). This protocol on its own may not be a sensible
choice and it would work best in combination with other protocols.

Protocol 4 - Beam pipe concentration. Tracks will have a higher
concentration around the beam pipe, i.e., higher track generation
probability as the radius gets smaller.

Protocols 1 and 3. While still landing on the last sub-detector
layer, there are distinct subsets of tracks bundled in a close vicinity
as jets. In other words, jets will be mixed with regular tracks.

Protocols 1 and 4. While still landing on the last sub-detector
layer, the tracks landing on the short-strip and the long-strip sub-
detector types will have a higher concentration around the beam
pipe, i.e., higher track generation probability as the radius gets
smaller for these sub-detector types. Tracks landing on the barrel
sub-detector type will not be affected.

Protocols 2 and 3. While still having uniformly distributed tracks
landing on a sphere, there will be uniformly distributed distinct
subsets of tracks bundled in a close vicinity as jets.

Protocols 3 and 4. The tracks will have a higher concentration
around the beam pipe, i.e., higher track generation probability as
the radius gets smaller. There will be jet formation also with higher
probability of occurring around the beam pipe.

Protocols 1, 3 and 4. This combination is the same as the previous,
protocols 3 and 4, with the additional condition that the tracks are
guaranteed to land on the last layer per sub-detector type.

Note that for our data generation we have only considered pro-
tocol 1 to increase recorded hit points for all tracks and to have hit
points for all sub-detector types. Needless to say, additional track
randomisation protocols focusing on specific corner cases, can be
easily defined and added to the tool.

To implement protocol 1, i.e., to guarantee that tracks land on
the last layer of a sub-detector type, we consider the coordinate
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domain of the last layer as the randomisation domain for track
direction vectors. Thus, before normalisation, all randomised V
will land on the last layer.

As it can be deduced from the above protocol descriptions, not
every combination is allowed, as some of the base protocols are
mutually exclusive. For instance, protocols 1 and 2 cannot be ap-
plied at the same time, as it is self-evident that a spherical uniform
distribution and a last layer hit guarantee cannot be true at the
same time. Accordingly, we can consider the base protocols within
two main categories, distribution protocols, affecting how tracks are
distributed in space, and feature protocols, defining special forms
of localised distribution. Currently, protocol 3 is the only feature
protocol defined. While feature protocols can be combined with
any distribution protocol, most distribution protocols are mutually
exclusive. A combination of two or more base distribution proto-
cols will also lead to another, more specific, distribution protocol,
e.g., protocols 1 and 4. The diagram in Figure 6 provides a visual
overview of different protocol combinations.

Distribution protocols

OO O] e
(G ] ()

Figure 6: Visualising how different base distribution and
feature protocols can be combined to achieve more complex
track randomisation behaviour.

Feature

4.4 Hit point calculation

Regarding hit point coordinates, i.e., (rp;z, Onis, zpir), depending on
the sub-detector shape, we are dealing with either a fixed z;4 or a
fixed rgy, for disks and barrels, respectively. Here, we consider the
disks as being flat and to have no thickness, while the barrels consist
only of cylinder shells, with no thickness. Shapes with thickness
are supported, for which the techniques involved will be similar.
Considering the set of track equations, we are to calculate the
free variable t at the sub-detector layer of interest. This specific ¢ is
denoted as tg, i.e., t at sub-detector. For hit coordinates at disks,

Zhit = Zsd
Onit = 0a,
lsq = Zsd = Zsd ’
zq 1
= lsd = Zsd»

Thit =tsd "1d = Zsd " Td-

Note that in the above calculation z; and z;4 must have matching
signs, rendering t;; > 0. In other words, tracks extruding towards
the positive or the negative side of the Z-axis can hit sub-detector
layers present at the positive or the negative side of the Z-axis,
respectively. We also know that z; # 0.

A similar calculation considering the ryy as fixed will result
in the hit coordinates for a barrel sub-detector layer, which we
will not repeat here. General approach towards calculation of hits
resulting from helical tracks follows the same principles, which we
will not repeat here. Figure 7 depicts a simple event with five tracks,
including separate views of the full event (Figure 7a) and calculated
hits (Figure 7b), for demonstration purposes. Note that the detector
orientation is vertical.

(b) The hits view of this event

Figure 7: An example event with five tracks

4.5 Available configuration

We have pointed out a few important configuration options in
Figure 4, i.e., geometry options as a whole, track randomisation
and options related to sensing and smearing probabilities when
recording hits. Looking at the available options in further detail,
REDVID is highly (re)configurable.



3D geometry options. It is possible to set the detector ID?, the co-
ordinates for the origin and the centre of each element, the presence
of different sub-detector types, thick or flat structure, span over
the radius and the z parameters including inner and outer radii,
sub-layer counts per sub-detector type, and the distance between
consecutive sub-layers per sub-detector type. Spawned detector
geometries can be saved for future use.

Experiment options. It is possible to set the experiment name,
track type, hit coordinate smearing (noise generation), event count,
fixed or variable track count with minimum and maximum bounds
for the latter, track randomisation protocol, and hit occurrence
probability.

Generic execution options. A complete folder structure is con-
structed, only requiring an anchor path to be configured. Addi-
tionally, the execution handler can operate in different modes, i.e.,
Sequential, Parallel, Batch Sequential and Batch Parallel. While par-
allelisation improves speed, automated detection of large simula-
tion jobs, followed by automated batching, is aimed at memory-
efficiency. Batch Parallel mode incorporates batching and intra-
batch parallelisation at the same time, improving both aspects.

Non-determinism invoking options. Though it is desirable to re-
duce the behavioural-space, as we have done extensively, it is of
utmost importance not to arrive at a deterministic simulation. In
REDVID, we invoke non-determinism in the simulated behaviour
by allowing different randomisations per event, i.e., mandatory
randomisation of track parameters, optional track count randomi-
sation, optional introduction of smearing for hit point parameters
(noise), and optional hit point occurrence (recording) probability.

Resulting from the modular design, different intermediate data
input/output points can be arranged, allowing REDVID to interact
with other available tooling. For instance, track data generated by
external Monte Carlo event generators can be used alongside a
spawned detector geometry to calculate hit points. Needless to say,
the input data has to be in a format compatible with REDVID.

5 DATA SET GENERATION

We have considered a number of workloads consisting of both
detector spawning and event simulation tasks. We have followed
simulation recipes with 10 000 events and varying track counts of
[1,10000] per event for each experiment, for both linear and helical
tracks. These recipes are listed below. Hit recording is performed
with smearing enabled and the detector geometry is the same for
all recipes. These generated data sets for linear and helical tracks
are intended as reference for physicists and data scientists alike
and are publicly accessible over Zenodo open repository [21, 18].

e exp-10k-events-1-tracks - 10 000 events, 1 track per event,
hit coordinate smearing enabled

e exp-10k-events-10-tracks - 10000 events, 10 tracks per
event, hit coordinate smearing enabled

o exp-10k-events-100-tracks - 10 000 events, 100 tracks per
event, hit coordinate smearing enabled

e exp-10k-events-Tk-tracks - 10000 events, 1000 tracks per
event, hit coordinate smearing enabled

2The detector ID can be set to auto-generate as well.
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e exp-10k-events-10k-tracks - 10000 events, 10 000 tracks
per event, hit coordinate smearing enabled

5.1 Data set schema

Considering that all of the above data sets are for the 3D domain,
the schema and relevant elaborations for the generated data are
listed below:

e event id - An incremental identifier for events belonging
to an experiment, which is unique within the scope of the
experiment.

e sub-detector id - An incremental identifier for different
sub-detector layers belonging to a geometry, which is unique
within the scope of the geometry.

e sub-detector type - The type of the sub-detector layer
recording a hit, which can be one of three available types,
pixel, short-strip, or long-strip.

e track id - An incremental identifier for tracks belonging to
an event, which is unique within the scope of the event.

e track type - Indicates the type of function defining the track
in terms of polynomial degree. At the moment, all tracks are
linear.

e rporradial const - The r coordinate of the (ro, 0o, zo) tuple
defining the point Py, used in a track’s parametric set of equa-
tions. The value will represent origin smearing for r. ro and
radial const are applicable to linear and helical expanding
track types, respectively.

e Oy or azimuthal const - The 8 coordinate of the (rg, 6y, zo)
tuple defining the point Py, used in a track’s parametric set
of equations. The value will represent origin smearing for 6.
0o and azimuthal const are applicable to linear and helical
expanding track types, respectively.

e zp or pitch const - The z coordinate of the (ro, 6, zo) tuple
defining the point Py, used in a track’s parametric set of equa-
tions. The value will represent origin smearing for z. zo and
pitch const are applicable to linear and helical expanding
track types, respectively.

e 14 - The r coordinate of the (ry, 64, z4) tuple defining the di-
rection vector Vg, used in a track’s parametric set of equations.
rq is applicable to the linear track type.

OR,

radial coeff - The coefficient affecting the radius rate in the
helical track. radial coeff is applied to the free variable in
the equation for r. radial coeff is applicable to the helical
expanding track type.

e 0, - The 0 coordinate of the (ry, 04, z;) tuple defining the di-
rection vector V, used in a track’s parametric set of equations.
rq is applicable to the linear track type.

OR,

azimuthal coeff - The coefficient affecting the clockwise/counter-

clockwise extrusion direction in the helical track. azimuthal
coeff is applied to the free variable in the equation for 6.
azimuthal coeff is applicable to the helical expanding track
type.

e z4 - The z coordinate of the (rg, 04,2z4) tuple defining the
direction vector Vg, used in a track’s parametric set of equa-
tions. This value will be 1 or -1, depending on which side of
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the XY-plane the track is being extruded from. r; is applicable
to the linear track type.
OR,
pitch coeff - The coefficient affecting the pitch rate in the
helical track. pitch coeff is applied to the free variable in
the equation for z. pitch coeff is applicable to the helical
expanding track type.

e hit id - An incremental identifier for hits belonging to an
event, which is unique within the scope of the event.

® rpir - The r coordinate of the (rp;s, Ois, 25ip) tuple defining
the recorded hit point on the relevant sub-detector.

® Oyi; - The 0 coordinate of the (rp;s, Opis» znir) tuple defining
the recorded hit point on the relevant sub-detector.

® zp;; - The z coordinate of the (rpj;, Onis, 2pir) tuple defining
the recorded hit point on the relevant sub-detector.

5.2 Performance benchmarking

In order to evaluate the performance of REDVID, we have bench-
marked the execution of simulations with a lower event count, 1 000
events per simulation and similar variations of track concentrations
per event as before, i.e., [1, 10 000]. For our metric collections, in-
cluding CPU-time and execution duration, high-precision counters
from the time library available in Python have been used. The
collected CPU-time results are provided in Table 1.

Simulations have been performed on the DAS-6 compute clus-
ter [4]. The machines used are each equipped with a single 24-core
AMD EPYC 7402P processor and 128 GB of main memory. Note
that the mean CPU-time calculations do not include the first event
of each recipe batch. This is due to the presence of cold-start effect
for the first event and delays resulting from it.

Though we have enforced single-threaded operation for our
benchmarks, workload parallelisation is rather trivial. The number
of events to be generated can be divided into any desired number of
batches and distributed amongst multiple threads. Considering the
timing results, we observe that the CPU-time values scale linearly,
i.e., a tenfold increase in the track concentration per event results
in roughly a tenfold increase in the full simulation CPU-time.

5.3 User operation

Whether independently, or as an integrated module within a work-
flow, similar to the depiction from Figure 2, users can use REDVID
primarily to generate data sets. The main script to execute the tool
isdigital_detector.py [19]. A configuration file is included and
populated with parameter values. Users only have to change the
anchor_path parameter to a valid path. This will be system de-
pendent. Alternatively, a different configuration file path can be
provided as an argument. The default name is REDVID_config.ini,
which can also be changed. Python package dependencies are min-
imal and can be observed in the requirements. txt file.

6 RELATED WORK

Although the overall available data is abundant, corner case data
is rather scarce. Such real-world data, or data synthesised with
accurate (in our case physics-accurate) simulations is complex in
terms of data dimensionality and granularity. This complexity is
directly resulting from the complexity of the real system, or the

accurate (physics-accurate) model of the system in case of simula-
tions. Within the HEP landscape for instance, we touched upon the
complexity of simulators such as Geant4 in Section 2, as well as the
dependence on these simulators by tools like ATLFAST.

The first challenge, lack of annotated data for one or more spe-
cific scenarios, has been recognised in the literature [14]. The second
challenge though, the issue of complexity, is not as well known.
A closely related acknowledgement has been made regarding the
complexity level of models for simulations [8].

The two main shortcomings of the previous efforts towards the
use of ML in physics problems have been use-case specificity [24]
and the lack of user-friendly tools [6]. As noted by Willard et al. [24],
the efforts surrounding the use of ML for physics-specific problems
are focused on sub-topics, or even use-cases. Although our method-
ology and synthetic data focuses on the domain of tracking for
detector data, we could claim that it is independent of the chosen
detector experiment.

The point from [24] regarding the computational efficiency of
ROMs matches our motivation. Where our work differs is in the
placement of our ROM within our methodology. Our reduced model
of a detector is considered as the model for simulations resulting
in synthetic data generation, which is different than ML-based
surrogate models as ROMs [7, 17], or ML-based surrogate models
built from ROMs [25].

7 CONCLUSION AND FUTURE WORK

With many computational science applications exploring the use
of ML-assisted solutions, there is a need for reduced complexity
simulations to facilitate the design process. In this work, we show
how a reduction in simulation complexity through ROMs and a
smaller behavioural-space for the simulator can result in a lower
complexity for synthesised data. This is particularly relevant for
our HEP use-case.

To demonstrate the feasibility of this approach, we have pre-
sented the design and implementation details of REDVID (REDuced
VIrtual Detector), our simulation framework fulfilling such a re-
duction. To demonstrate REDVID’s feasibility, we executed it with
relevant workload recipes, and have made available the resulting
data sets over Zenodo open repository. We further analysed the
computational cost figures for these experiments, and we conclude
that, even though our tool is developed in Python, computational
cost figures (case in point, 15 seconds, 138 seconds and 22 minutes
of CPU-time for 1 000 events with 10, 100 and 1 000 tracks per event,
respectively) indicate efficiency for frequent executions. Accord-
ingly, the lightweight nature of REDVID simulations makes our
tool a suitable choice as a simulation-in-the-loop with data-driven
workflows for HEP. This is the case of searching for a ML-assisted
solution to address the challenge of particle track reconstruction.

However, reduced complexity and less descriptive data distances
our simulations from the physics-accurate ground truth. We have
explained that, to opt for such an approximation, is a deliberate act,
positioning REDVID as a suitable middle ground amongst other
available tools, not as exact as physics-accurate simulations, and
not as synthetic as dummy data generators. The reduced complexity
especially allows for early problem formulation and testing at early
stages, when dealing with ML-assisted solution design workflows.
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Table 1: REDVID execution CPU-time cost for simulations of 1000 events with various track concentrations. All values
are in milliseconds. Full simulation times are provided in minutes as well. Even though REDVID is developed in Python,
computational cost figures indicate efficiency for frequent executions.

Recipe for

1000 events 3D detector spawning

Track randomisation
per event - Mean

Full simulation of
1000 events (minutes)

Hit discovery
per event - Mean

1 track per event 0.025
10 tracks per event 0.025
100 tracks per event 0.025
1000 tracks per event 0.025
10000 tracks per event 0.024

0.043 1.463 2731.17 (0.05)
0.083 13.429 15418.589 (0.26)
0.465 129.864 137 623.954 (2.29)
4.582 1285.989 1353396.641 (22.56)
43.765 12 496.208 13591 628.526 (226.53)

Yet another advantage of reduced complexity data that still respects
the high-level relations, is in its pedagogical merit, enabling problem
solving practices in higher education.

While keeping the distance from physics-accurate tools, RED-
VID can be extended in numerous ways. Considering our foreseen
methodology, we will be implementing further low-cost, complex-
ity inducing features, e.g., various track randomisation protocols
to allow for diverse particle propagation scenarios, more complex
non-linear track definitions beyond helical tracks, and possibly a
Domain-Specific Language (DSL) to be used for virtual detector
definitions.

Aside from REDVID itself, we intend to implement the full ML-
assisted solution search workflow depicted in Figure 2 and perform
explorations of models based on different ML architectures.
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